We execute tree ‘domestication’ as a farmer-driven and market-led process, which matches the intraspecific diversity of locally important trees to the needs of subsistence farmers, product markets, and agricultural environments. We propose that the products of such domesticated trees are called Agroforestry Tree Products (AFTPs) to distinguish them from the extractive tree resources commonly referred to as non-timber forest products (NTFPs). The steps of such a domestication process are: selection of priority species based on their expected products or services; definition of an appropriate domestication strategy considering the farmer-, market-, and landscape needs; sourcing, documentation and deployment of germplasm (seed, seedlings or clonal material); and tree improvement research (tree breeding or cultivar selection pathways). The research phase may involve research institutions on their own or in participatory mode with the stakeholders such as farmers or communities. Working directly with the end-users is advantageous towards economic, social and environmental goals, especially in developing countries. Two case studies (Prunus africana and Dacryodes edulis) are presented to highlight the approaches used for medicinal and fruit-producing species. Issues for future development include the expansion of the program to a wider range of species and their products and the strengthening of the links between product commercialization and domestication. It is important to involve the food industry in this process, while protecting the intellectual property rights of farmers to their germplasm.
Tag: Genetic improvement
Agroforestry trees: to domesticate or not to domesticate?
The improvement of agroforestry is as much a social and political challenge as a biological one. To encourage tree planting amonst a diverse client group of resource poor farmers requires better understanding of farmer’s decision-making processes. The modest resources for domestication efforts will have to be focused on priority species which have been determined following objective methodologies. Common to the domestication of all species is a need to accelerate the process to deliver appropriate imorovement early on. The proactive multiplication of germplasm is required to reduce the lag phase between identification and adoption of improved material.
Tree improvement research for agroforestry: a note of caution
Tree improvement is increasingly considered as an important research direction for the development of more productive agroforestry systems. In these systems trees have multiple economic uses and ecological functions that should be taken into account in tree improvement programmes in order for these programmes to ensure that the improved species, the end-result of their research, is adapted to agroforestry. The key issue here may be for tree improvement specialists involved in agroforestry programmes to be able to differentiate, from the range of characters that could be selected for improvement of a given species, characters that are absolutely necessary to improve whatever agroecosystem the tree may be grown in – the primary targets and characters for which improvement would only be appropriate for particular agro ecosystems – the secondary targets.
Prioritization of tree species for agroforestry systems in the lowland Amazon forests of Peru
An analysis was made of information provided by farmers about products and services of tree species, and the preferred tree species for agroforestry systems in the Yurimaguas, Pucallpa and Iquitos areas of Peru. The methodology of the study was based on a process developed by the International Centre for Research in Agroforestry (ICRAF) and the International Service for National Agricultural Research (ISNAR), with modifications to adapt it to the study area. Farmers selected 58 species in Yurimaguas, 62 in Pucallpa and 100 in Iquitos; the selections included 41 plant families. Considering the number of species preferred by farmers and the number of people surveyed, farmers in the Yurimaguas area appeared to have greater knowledge about trees than farmers in the other 2 areas. Some 23 priory species in 17 families were selected for the development of agroforestry systems for this tropical humid lowland zone. The priority products of these 23 species are wood, energy and food. The highest-priority species for genetic improvement research for agroforestry systems are Bactris gasipaes, Cedrelinga catenaeformis, Inga edulis, Calycophyllum spruceanum and Guazuma crinita.
Calorific value of Prosopis africana and Balanites aegyptiaca wood: relationships with tree growth, wood density and rainfall gradients in the West African Sahel
Prosopis africana and Balanites aegyptiaca are native tree species in the West African Sahel and provide wood for fuel, construction and other essential products. A provenance/progeny test of each species was established at one relatively dry site in Niger, and evaluated at 13 years. Gross calorific value of the wood was determined for a random sample of trees in each test: gross CV and CVm3 = gross calorific value in MJ kg-1 and MJ m-3, respectively. The major objectives were to determine if gross CV was positively correlated with wood density and tree growth, and if gross CV and/or CVm3 varied with rainfall gradients in the sample region. Provenances were grouped into a drier and more humid zone, and correlations were computed among all trees and separately in each zone. Results indicated that gross CV was not significantly correlated with density in either species. Gross CV was positively correlated with growth of pafricana (but not B. aegyptiaca) only in the drier zone. Gross CVm3 was positively correlated with growth of both species, and the correlations were stronger in the drier zone. Multiple regressions with provenance latitude, longitude and elevation indicated that provenance means for gross CV increased, in general, from the drier to the more humid zones. Regressions with gross CVm3 were not significant. Results are compared with earlier research reports from the provenance/progeny tests and with other tropical hardwood species; and practical implications are presented for tree improvement and conservation programs in the region.
The Future of Food: Domestication and Commercialization of Indigenous Food Crops in Africa over the Third Decade (2012–2021)
This paper follows the transition from ethnobotany to a deeper scientific understanding of the food and medicinal properties of African agroforestry tree products as inputs into the start of domestication activities. It progresses on to the integration of these indigenous trees as new crops within diversified farming systems for multiple social, economic and environmental benefits. From its advent in the 1990s, the domestication of indigenous food and non-food tree species has become a global programme with a strong African focus. This review of progress in the third decade is restricted to progress in Africa, where multi-disciplinary research on over 59 species has been reported in 759 research papers in 318 science publications by scientists from over 833 research teams in 70 countries around the world (532 in Africa). The review spans 23 research topics presenting the recent research literature for tree species of high priority across the continent, as well as that in each of the four main ecological regions: the humid zone of West and Central Africa; the Sahel and North Africa; the East African highlands and drylands; and the woody savannas of Southern Africa. The main areas of growth have been the nutritional/medicinal value of non-timber forest products; the evaluation of the state of natural resources and their importance to local people; and the characterization of useful traits. However, the testing of putative cultivars; the implementation of participatory principles; the protection of traditional knowledge and intellectual property rights; and the selection of elite trees and ideotypes remain under-researched. To the probable detriment of the upscaling and impact in tropical agriculture, there has been, at the international level, a move away from decentralized, community-based tree domestication towards a laboratory-based, centralized approach. However, the rapid uptake of research by university departments and national agricultural research centres in Africa indicates a recognition of the importance of the indigenous crops for both the livelihoods of rural communities and the revitalization and enhanced outputs from agriculture in Africa, especially in West Africa. Thus, on a continental scale, there has been an uptake of research with policy relevance for the integration of indigenous trees in agroecosystems and their importance for the attainment of the UN Sustainable Development Goals. To progress this in the fourth decade, there will need to be a dedicated Centre in Africa to test and develop cultivars of indigenous crops. Finally, this review underpins a holistic approach to mitigating climate change, as well as other big global issues such as hunger, poverty and loss of wildlife habitat by reaping the benefits, or ‘profits’, from investment in the five forms of Capital, described as ‘land maxing’. However, policy and decision makers are not yet recognizing the potential for holistic and transformational adoption of these new indigenous food crop opportunities for African agriculture. Is ‘political will’ the missing sixth capital for sustainable development