Sensitivity of Above-Ground Biomass Estimates to Height-Diameter Modelling in Mixed-Species West African Woodlands

It has been suggested that above-ground biomass (AGB) inventories should include tree height (H), in addition to diameter (D). As H is a difficult variable to measure, H-D models are commonly used to predict H. We tested a number of approaches for H-D modelling, including additive terms which increased the complexity of the model, and observed how differences in tree-level predictions of H propagated to plot-level AGB estimations. We were especially interested in detecting whether the choice of method can lead to bias. The compared approaches listed in the order of increasing complexity were: (B0) AGB estimations from D-only; (B1) involving also H obtained from a fixed-effects H-D model; (B2) involving also species; (B3) including also between-plot variability as random effects; and (B4) involving multilevel nested random effects for grouping plots in clusters. In light of the results, the modelling approach affected the AGB estimation significantly in some cases, although differences were negligible for some of the alternatives. The most important differences were found between including H or not in the AGB estimation. We observed that AGB predictions without H information were very sensitive to the environmental stress parameter (E), which can induce a critical bias. Regarding the H-D modelling, the most relevant effect was found when species was included as an additive term. We presented a two-step methodology, which succeeded in identifying the species for which the general H-D relation was relevant to modify. Based on the results, our final choice was the single-level mixed-effects model (B3), which accounts for the species but also for the plot random effects reflecting site-specific factors such as soil properties and degree of disturbance.

Carbon balance in rubber (Hevea brasiliensis) plantations: A review on uncertainties at plot and landscape level

Rapid expansion of natural rubber plantations in South-East Asia and other regions has greatly altered ecosystem based carbon (C) stocks with potential impacts on climate change mitigation and future C trading opportunities. Therefore, reliable estimations of carbon sequestration and emission at the landscape level after land cover transition from forest, swidden agriculture and other land use types are needed. We reviewed studies on C stocks and dynamics in rubber plantations considering the contribution of aboveground and belowground biomass, soil organic matter, collected latex and other minor components. C sequestration occurred after conversion of arable land to rubber plantations while C losses usually prevailed if forest was converted to rubber. These general trends strongly depended on local climate conditions and soil properties as well as on topography. Non-traditional planting of rubber under subtropical conditions with a dryer climate and at high elevations (300–1000 m above sea level) decreased the C sequestration potential of rubber. We show how rotation length, rubber clone, and management strategies like tapping frequency or planting density affect C stocks, discuss the uncertainties in C stock estimation and highlight improved approaches. An important conclusion is that upscaling of C stocks and dynamics under different climate scenarios and rotation lengths to a regional level requires the use of time averaged C stocks. Enhanced remote sensing techniques can greatly improve C stock estimates at the regional level, allowing for an accounting of the variability caused by terrain and plantation properties. A partial life cycle assessment of rubber production revealed greenhouse gas emissions as a minor contribution when compared to land use change effects on plant and soil C stocks and C accumulation in latex, wood products and seed oil. The review highlights scantily explored topics and proposes directions for future studies, which should decrease uncertainties in C estimates in rubber dominated landscapes.

Minimising artifacts and biases in chamber-based measurements of soil respiration

Soil respiration is one of the largest and most important fluxes of carbon in terrestrial ecosystems. While eddy covariance methods are becoming widely used to measure nighttime total ecosystem respiration the use of chambers placed over the soil is the most direct way of measuring respiration occurring within the soil and litter layers. Several decades of experience with chamber-based measurements have revealed most of the potential sources of error with this methodology. The objectives of this paper are to review several recently expressed concerns about uncertainties of chamber-based measurements of CO2 emissions from soils to evaluate the direction and magnitude of these potential errors and explain procedures that minimize these errors and biases. Disturbance of diffusion gradients cause underestimate of fluxes by less than 15% in most cases and can be partially corrected for with curve fitting and/or can be minimized by using brief measurement periods. Underpressurization or overpressurization of the chamber caused by flow restrictions in air circulating designs can cause large errors but can also be avoided with properly sized chamber vents and unrestricted flows. We found very small pressure differentials (±0.1 Pa) and modest (∼15%) inconsistent errors in flux estimates using our chamber design. Somewhat larger pressure differentials (±0.9 Pa) were observed under windy conditions and the accuracy of chamber-based measurements made under such conditions needs more research. Spatial and temporal heterogeneity can be addressed with appropriate chamber sizes and numbers and frequency of sampling. For example means of eight randomly chosen flux measurements from a population of 36 measurements made with 300 cm2 diameter chambers in tropical forests and pastures were within 25% of the full population mean 98% of the time and were within 10% of the full population mean 70% of the time. Finally comparisons of chamber-based measurements with tower-based measurements require analysis of the scale of variation within the purported tower footprint. In a forest at Howland ME soil respiration rates differed by a factor of 2 between very poorly drained and well drained soils but these differences were mostly fortuitously cancelled when spatially extrapolated over purported footprints of 600–2100 m length. While all of these potential sources of measurement error and sampling biases must be carefully considered properly designed and deployed chambers provide a reliable means of accurately measuring soil respiration in terrestrial ecosystems.

Minimizing artifacts and biases in chamber-based measurements of soil respiration

Soil respiration is one of the largest and most important fluxes of carbon in terrestrial ecosystems. While eddy covariance methods are becoming widely used to measure nighttime total ecosystem respiration, the use of chambers placed over the soil is the most direct way of measuring respiration occurring within the soil and litter layers. Several decades of experience with chamber-based measurements have revealed most of the potential sources of error with this methodology. The objectives of this paper are to review several recently expressed concerns about uncertainties of chamber-based measurements of CO2 emissions from soils, to evaluate the direction and magnitude of these potential errors, and explain procedures that minimize these errors and biases. Disturbance of diffusion gradients cause underestimate of fluxes by less than 15% in most cases, and can be partially corrected for with curve fitting and/or can be minimized by using brief measurement periods. Underpressurization or overpressurization of the chamber caused by flow restrictions in air circulating designs can cause large errors, but can also be avoided with properly sized chamber vents and unrestricted flows. We found very small pressure differentials (±0.1 Pa) and modest (15%), inconsistent errors in flux estimates using our chamber design. Somewhat larger pressure differentials (±0.9 Pa) were observed under windy conditions, and the accuracy of chamber-based measurements made under such conditions needs more research. Spatial and temporal heterogeneity can be addressed with appropriate chamber sizes and numbers and frequency of sampling. For example, means of eight randomly chosen flux measurements from a population of 36 measurements made with 300 cm2 diameter chambers in tropical forests and pastures were within 25% of the full population mean 98% of the time and were within 10% of the full population mean 70% of the time. Finally, comparisons of chamber-based measurements with tower-based measurements require analysis of the scale of variation within the purported tower footprint. In a forest at Howland, ME, soil respiration rates differed by a factor of 2 between very poorly drained and well drained soils, but these differences were mostly fortuitously cancelled when spatially extrapolated over purported footprints of 600–2100 m length. While all of these potential sources of measurement error and sampling biases must be carefully considered, properly designed and deployed chambers provide a reliable means of accurately measuring soil respiration in terrestrial ecosystems.

The effects of invertebrates on wood decomposition across the world

Invertebrates and microorganisms are important but climate-dependent agents of wood decomposition globally. In this meta-analysis, we investigated what drives the invertebrate effect on wood decomposition worldwide. Globally, we found wood decomposition rates were on average approximately 40% higher when invertebrates were present compared to when they were excluded. This effect was most pronounced in the tropics, owing mainly to the activities of termites. The invertebrate effect was stronger for woody debris without bark as well as for that of larger diameter, possibly reflecting bark- and diameter-mediated differences in fungal colonisation or activity rates relative to those of invertebrates. Our meta-analysis shows similar overall invertebrate effect sizes on decomposition of woody debris derived from angiosperms and gymnosperms globally. Our results suggest the existence of critical interactions between microorganism colonisation and the invertebrate contribution to wood decomposition. To improve biogeochemical models, a better quantification of invertebrate contributions to wood decomposition is needed.

Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter productivity measurements) their associated canopy photosynthetic capacity (enhanced vegetation index EVI) and climate we ask how carbon assimilation and aboveground allocation are related to climate seasonality in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rainfall is < 2000ĝ€-mmĝ€-yrĝ'1 (water-limited forests) and to radiation otherwise (light-limited forests). On the other hand independent of climate limitations wood productivity and litterfall are driven by seasonal variation in precipitation and evapotranspiration respectively. Consequently light-limited forests present an asynchronism between canopy photosynthetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest productivity in a drier climate in water-limited forest and in current light-limited forest with future rainfall < 2000ĝ€-mmĝ€-yrĝ'1. Author(s) 2016.

Effect of rewetting degraded peatlands on carbon fluxes: a meta-analysis

Numerous studies claim that rewetting interventions reduce CO2 and increase CH4 fluxes. To verify the claim, we conducted a systematic review and meta-analysis of the effects of rewetting on CO2 and CH4 fluxes and dissolved organic carbon (DOC). We identified 28 primary articles eligible for meta-analysis, from which we calculated 48 effect sizes for CO2 emissions, 67 effect sizes for CH4 emissions, and 5 effect sizes for DOC. We found that rewetting significantly decreased CO2 fluxes, with temperate zones showing the highest Hedges’ g effect size (−0.798 ± 0.229), followed by tropical (−0.338 ± 0.269) and boreal (−0.209 ± 0.372) zones. Meanwhile, rewetting increased CH4 fluxes, with the highest Hedges’ g effect size shown in temperate zones (1.108 ± 0.144), followed by boreal (0.805 ± 0.183) and tropical (0.096 ± 0.284) zones. In addition, based on yearly monitoring after rewetting, the CH4 emissions effect size increased significantly over the first 4 years (r2 = 0.853). Overall, the rewetting intervention reduced CO2 emissions by −1.43 ± 0.35 Mg CO2–C ha−1 year−1, increased CH4 emissions by 0.033 ± 0.003 Mg CH4–C ha−1 year−1, and had no significant impact on DOC. To improve the precision and reduce the bias of rewetting effect size quantification, it is recommended to conduct more experimental studies with extended monitoring periods using larger sample sizes and apply the before-after control-impact study design, especially in boreal and tropical climate zones.

Carbon stocks and fluxes in Asia-Pacific mangroves: current knowledge and gaps

Mangrove forest plays a key role in regulating climate change, earth carbon cycling and other biogeochemical processes within blue carbon ecosystems. Therefore, mangrove forests should be incorporated into Earth system climate models with the aim of understanding future climate change. Despite multiple carbon stock and flux assessments taking place over the past couple of decades, concrete knowledge of carbon source/sink patterns is largely lacking, particularly in the biodiversity-rich Asia-Pacific (AP) region with its 68 493 km2 of mangrove area. Thus, to understand the gaps in mangrove blue carbon research in the AP region, we summarize a recent decade-long inventory of carbon stock pools (aboveground, belowground and soil) and biogeochemical flux components (burial, export/import, soil-air and water-air CO2 flux) across 25 AP countries to understand the current knowledge and gaps. While carbon stock assessments of individual components are available for all 25 countries, whole ecosystem carbon stocks—including live and standing dead aboveground and belowground, downed woody debris and soil carbon stocks—are often lacking, even in highly researched countries like Indonesia. There is restricted knowledge around biogeochemical carbon fluxes in 55% of the countries, suggesting poor carbon flux research across the region. Focusing on flux components, reports on sediment-to-sea carbon exports are extremely limited (coming from just nine countries in the AP region). There is notable scarcity of data on carbon export fluxes in Indonesian mangroves. Given the key role AP mangroves play in climate change mitigation worldwide, more detailed and methodologically comparable investigation of biogeochemical source/sink processes is required to better understand the role of this large carbon source in global carbon stocks and fluxes, and hence, global climate.

Proximal remote sensing and gross primary productivity in a temperate salt marsh

Salt marshes are highly productive ecosystems relevant for Blue Carbon assessments, but information for estimating gross primary productivity (GPP) from proximal remote sensing (PRS) is limited. Temperate salt marshes have seasonal canopy structure and metabolism changes, defining different canopy phenological phases, GPP rates, and spectral reflectance. We combined multi-annual PRS data (i.e., PhenoCam, discrete hyperspectral measurements, and automated spectral reflectance sensors) with GPP derived from eddy covariance. We tested the performance of empirical models to predict GPP from 12 common vegetation indices (VIs; e.g., NDVI, EVI, PSRI, GCC), Sun-Induced Fluorescence (SIF), and reflectance from different areas of the electromagnetic spectrum (i.e., VIS-IR, RedEdge, IR, and SIF) across the annual cycle and canopy phenological phases (i.e., Greenup, Maturity, Senescence, and Dormancy). Plant Senescence Reflectance Index (PSRI) from hyperspectral data and the Greenness Index (GCC) from PhenoCam, showed the strongest relationship with daily GPP across the annual cycle and within phenological phases (r2=0.30–0.92). Information from the visible-infrared electromagnetic region (VIS-IR) coupled with a partial least square approach (PLSR) showed the highest data-model agreement with GPP, mainly because of its relevance to respond to physiological and structural changes in the canopy, compared with indices (e.g., GCC) that particularly react to changes in the greenness of the canopy. The most relevant electromagnetic regions to model GPP were ∼550 nm and ∼710 nm. Canopy phenological phases impose challenges for modeling GPP with VIs and the PLSR approach, particularly during Maturity, Senescence, and Dormancy. As more eddy covariance sites are established in salt marshes, the application of PRS can be widely tested. Our results highlight the potential to use canopy reflectance from the visible spectrum region for modeling annual GPP in salt marshes as an example of advances within the AmeriFlux network.

CongoFlux – The First Eddy Covariance Flux Tower in the Congo Basin

The Congo basin is home to the second-largest tropical forest in the world. Therefore, it plays a crucial role in the regional water cycle, the global carbon cycle and the continental greenhouse gas balance. Yet very few field-based data on related processes exist. In the wake of global change, there is a need for a better understanding of the current and future response of the forest biome in this region. A new long-term effort has been set up to measure the exchange of greenhouse gasses between a humid lowland tropical forest in the Congo basin and the atmosphere via an eddy-covariance (EC) tower. Eddy-covariance research stations have been used for decades already in natural and man-made ecosystems around the globe, but the natural ecosystems of Central Africa remained a blind spot. The so-called “CongoFlux” research site has been installed right in the heart of the Congo Basin, at the Yangambi research center in DR Congo. This introductory paper presents an elaborated description of this new greenhouse gas research infrastructure; the first of its kind in the second-largest tropical forest on Earth.

Resilient Landscapes is powered by CIFOR-ICRAF. Our mission is to connect private and public actors in co-beneficial landscapes; provide evidence-based business cases for nature-based solutions and green economy investments; leverage and de-risk performance-driven investments with combined financial, social and environmental returns.

Learn more about Resilient Landscapes Luxembourg

2025 All rights reserved    Privacy notice