Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., =10 cm diameter at breast height) abundance relative to co-occurring non-palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long-term climate stability. Life-form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non-tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above-ground biomass, but the magnitude and direction of the effect require additional work. Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests.
Tag: arecaceae
Use and Cultural Significance of Raphia Palms
The genus Raphia (Palmae / Arecaceae) contains 22 species and represents a major multiuse resource across tropical Africa and Madagascar. Raphia species provide goods that range from food to construction material and medicine. Its species play a vital cultural role in African societies. Despite its importance, the taxonomy, ecology, and ethnobotany of this genus remain poorly understood. Here, we review the multiplicity of uses, products and cultural importance of Raphia species across its distribution. We provide a near exhaustive list of all products derived from Raphia species, classified by species and major use categories. We record nearly 100 different uses, traded and commercialized at local, regional, and national levels. Most species have several uses. Raphia wine is the most important product, followed by grubs and fiber extraction. Our review improves our understanding of the uses and cultural importance of Raphia species. If Raphia resources are managed responsibly, they will contribute to alleviate poverty, fight against hunger and conserve tropical biodiversity, especially in Africa.