Disease is the main reason for the use of antimicrobials in calf rearing, and antibiotics are commonly used to treat calves, including for unknown diseases. This leads to antimicrobial resistance, which is a challenge to the livestock industry and public health. Plant products containing high levels of phytochemicals may improve the immunity and resistance of calves against infections, thereby reducing the use of antimicrobials. This study aimed to investigate the effect of Phyllanthus emblica (Amla) fruit powder (PE) supplementation on antioxidant capacity and immune response of preweaning dairy calves. One hundred, 2-day-old, male Holstein calves were randomly assigned into five treatment groups receiving 0, 5, 10, 20, and 40 g/d PE supplementation. Antioxidant and immune indices and pro- and anti-inflammatory cytokines were analyzed from serum samples, whereas 16S rRNA was analyzed from rumen fluid and fecal samples. PE supplementation, at 5 g/d, protected calves against oxidative stress and improved antioxidant enzymes and immune and anti-inflammatory responses, showing its immunity-enhancing and protective roles against infections. However, the antioxidant capacity and immune response decreased with increasing PE levels, illustrating the adverse effects of PE supplementation at higher doses. The analysis of ruminal and fecal bacterial community abundance detected higher proportions of Firmicutes at an early age, and a higher Bacteroidetes to Firmicutes ratio at weaning, in calves supplemented with 5 g/d PE. This contributed to the development of the immune system in early life, and improved immune and anti-inflammatory responses at a later age. The overall results suggest that PE could be supplemented at 5 g/d for preweaning dairy calves to protect against oxidative stress and infections while maintaining normal gut microbial hemostasis.
Tag: antioxidants
Oxidative Stress in Dairy Cows: Insights into the Mechanistic Mode of Actions and Mitigating Strategies
This review examines several molecular mechanisms underpinning oxidative stress in ruminants and their effects on blood and milk oxidative traits. We also investigate strategies to alleviate or repair oxidative damages by improving animal immune functions using novel feed additives. Microbial pathogenic cells, feeding management, and body condition score were some of the studied factors, inducing oxidative stress in ruminants. The predominance of Streptococcus spp. (24.22%), Acinetobacter spp. (21.37%), Romboutsia spp. (4.99%), Turicibacter spp., (2.64%), Stenotrophomonas spp. (2.33%), and Enterococcus spp. (1.86%) was found in the microbiome of mastitis cows with a decrease of d-mannose and increase of xanthine:guanine ratio when Streptococcus increased. Diversity of energy sources favoring the growth of Fusobacterium make it a keystone taxon contributing to metritis. Ruminal volatile fatty acids rose with high-concentrate diets that decreased the ruminal pH, causing a lysis of rumen microbes and release of endotoxins. Moreover, lipopolysaccharide (LPS) concentration, malondialdehyde (MDA), and superoxide dismutase (SOD) activities increased in high concentrate cows accompanied by a reduction of total antioxidant capacity (T-AOC), glutathione peroxidase (GPx), and catalase (CAT) activity. In addition, albumin and paraoxonase concentrations were inversely related to oxidative stress and contributed to the protection of low-density and high-density lipoproteins against lipid peroxidation, protein carbonyl, and lactoperoxidase. High concentrate diets increased the expression of MAPK pro-inflammatory genes and decreased the expression of antioxidant genes and proteins in mammary epithelial tissues. The expression levels of NrF2, NQO1, MT1E, UGT1A1, MGST3, and MT1A were downregulated, whereas NF-kB was upregulated with a high-grain or high concentrate diet. Amino-acids, vitamins, trace elements, and plant extracts have shown promising results through enhancing immune functions and repairing damaged cells exposed to oxidative stress. Further studies comparing the long-term effect of synthetic feed additives and natural plant additives on animal health and physiology remain to be investigated.
Comparative Transcriptomics Analysis of Roots and Leaves under Cd Stress in Calotropis gigantea L.
Calotropis gigantea is often found in mining areas with heavy metal pollution. However, little is known about the physiological and molecular response mechanism of C. gigantea to Cd stress. In the present study, Cd tolerance characteristic of C. gigantea and the potential mechanisms were explored. Seed germination test results showed that C. gigantea had a certain Cd tolerance capacity. Biochemical and transcriptomic analysis indicated that the roots and leaves of C. gigantea had different responses to early Cd stress. A total of 176 and 1618 DEGs were identified in the roots and leaves of C. gigantea treated with Cd compared to the control samples, respectively. Results indicated that oxidative stress was mainly initiated in the roots of C. gigantea, whereas the leaves activated several Cd detoxification processes to cope with Cd, including the upregulation of genes involved in Cd transport (i.e., absorption, efflux, or compartmentalization), cell wall remodeling, antioxidant system, and chelation. This study provides preliminary information to understand how C. gigantea respond to Cd stress, which is useful for evaluating the potential of C. gigantea in the remediation of Cd-contaminated soils.
Supplementation with sodium butyrate improves growth and antioxidant function in dairy calves before weaning
Background: There is increasing research interest in using short-chain fatty acids (SCFAs) including butyrate as potential alternatives to antibiotic growth promoters in animal production. This study was conducted to evaluate the effects of supplementation of sodium butyrate (SB) in liquid feeds (milk, milk replacer, and the mixture of both) on the growth performance, rumen fermentation, and serum antioxidant capacity and immunoglobins in dairy calves before weaning. Forty healthy female Holstein calves (4-day-old, 40 ± 5 kg of body weight) were housed in individual hutches and randomly allocated to 1 of 4 treatment groups (n = 10 per group) using the RAND function in Excel. The control group was fed no SB (SB0), while the other three groups were supplemented with 15 (SB15), 30 (SB30), or 45 (SB45) g/d of SB mixed into liquid feeds offered. The calves were initially fed milk only (days 2 to 20), then a mixture of milk and milk replacer (days 21 to 23), and finally milk replacer only (days 24 to 60). Results: The SB supplementation enhanced growth and improved feed conversion into body weight gain compared with the SB0 group, and the average daily gain increased quadratically with increasing SB supplementation. No significant effect on rumen pH; concentrations of NH3-N, individual and total VFAs; or acetate: propionate (A:P) ratio was found during the whole experimental period. Serum glutathione peroxidase activity increased linearly with the increased SB supplementation, while the serum concentration of maleic dialdehyde linearly decreased. Serum concentrations of immunoglobulin A, immunoglobulin G, or immunoglobulin M were not affected by the SB supplementation during the whole experimental period. Conclusions: Under the conditions of this study, SB supplementation improved growth performance and antioxidant function in pre-weaned dairy calves. We recommended 45 g/d as the optimal level of SB supplementation mixed into liquid feeds (milk or milk replacer) to improve the growth and antioxidant function of dairy calves before weaning. © 2021, The Author(s).
Biofilm forming rhizobacteria enhance growth and salt tolerance in sunflower plants by stimulating antioxidant enzymes activity
Salinity stress is one of the major environmental stresses that impose global socio-economic impacts, as well as hindering crop productivity. Halotolerant plant growth-promoting rhizobacteria (PGPR) having potential to cope with salinity stress can be employed to counter this issue in eco-friendly way. In the present investigation, halotolerant PGPR strains, AP6 and PB5, were isolated from saline soil and characterized for their biochemical, molecular and physiological traits. Sequencing of 16 S rRNA gene and comparative analysis confirmed the taxonomic affiliation of AP6 with Bacillus licheniformis and PB5 with Pseudomonas plecoglossicida. The study was carried out in pots with different levels of induced soil salinity viz. 0, 5, 10 and 15 dSm−1 to evaluate the potential of bacterial inoculants in counteracting salinity stress in sunflower at different plant growth stages (30, 45 and 60 days after sowing). Both the bacterial inoculants were capable of producing indole acetic acid and biofilm, solubilizing inorganic rock phosphate, and also expressed ACC deaminase activity. The PGPR inoculated plants showed significantly higher fresh and dry biomass, plant height, root length and yield plant−1. Ameliorative significance of applied bacterial inoculants was also evidenced by mitigating oxidative stress through upregulation of catalase (CAT), superoxide dismutase (SOD) and guaiacol peroxidase (GPX) antioxidant enzymes. Increase in photosynthetic pigments, gas exchange activities and nutrient uptake are crucial salt stress adaptations, which were enhanced with the inoculation of salt tolerant biofilm producing PGPR in sunflower plants. Although increase in salinity stress levels has gradually decreased the plant’s output compared to non-salinized plants, the plants inoculated with PGPR confronted salinity stress in much better way than uninoculated plants. Owing to the wide action spectrum of these bacterial inoculants, it was concluded that these biofilm PGPR could serve as effective bioinoculants and salinity stress alleviator for sunflower (oil seed crop) by increasing crop productivity in marginalized agricultural systems. © 2020 Elsevier Masson SAS