Variation in wood physical properties within stems of Guazuma crinita, a timber tree species in the Peruvian Amazon

An understanding of wood physical properties and the interrelationships that govern them is required for efficient utilization of timber tree species. Guazuma crinita is a fast-growing timber tree of agroforestry systems in the Peruvian Amazon. The aim of this study was to assess variation in wood physical properties within the G. crinita stem. Wood samples were obtained from the base, middle and top of the stem of 12 randomly selected eight-year-old trees from six provenances in order to determine wood moisture content, density, specific gravity, radial, tangential and volumetric shrinkage and the coefficient of anisotropy. Pearson correlations between physical properties were also determined. The highest basic density was 459 kg/m3 from Tournavista provenance. Mean basic density and specific gravity were 430 kg/m3 and 0.45 respectively. There was statistically significant variation (p 0.05), due to stem level within the trees. The moderate values of density and anisotropy coefficient (1.56) suggest that G. crinita is a stable wood; these are important advantages in terms of costs of the processes of transport and transformation. Given the variation found in the limited tree samples of this study, we recommend further analysis with larger samples from different provenances and planting zones.


Download :
English



Authors

Tuisima-Coral L L,Odicio-Guevara J E,Weber J C,Lluncor-Mendoza D,Lojka B

Publication year

2022

Resilient Landscapes is powered by CIFOR-ICRAF. Our mission is to connect private and public actors in co-beneficial landscapes; provide evidence-based business cases for nature-based solutions and green economy investments; leverage and de-risk performance-driven investments with combined financial, social and environmental returns.

2025 All rights reserved    Privacy notice