Arbuscular mycorrhizal fungi potentially regulate N2O emissions from agricultural soils via altered expression of denitrification genes

Agricultural soils are an important source of nitrous oxide (N2O), a potent greenhouse gas involved in the destruction of the protective ozone layer that contributes to global warming. During N2O production, soil microorganisms play important driving and regulating roles. A few recent studies have revealed the potential effects of arbuscular mycorrhizal fungi (AMF), a widely distributed soil fungi, on controlling N2O emissions. However, how AMF regulate N2O production from soils remains poorly understood. To address the knowledge gap, we manipulated two independent soil environments, which were either allowed (AM) or prevented (NM) access by AMF hyphae in a microcosm experiment (n = 5). Soil physicochemical properties, N2O flux, the diversity of bacterial communities, and the abundance of key genes responsible for N2O production were assessed in both treatments over three months. Results showed that the presence of AMF significantly decreased N2O emissions from agricultural soils in the 1st month, and the abundance of key genes responsible for denitrification (nirK and nosZ) significantly decreased in AM treatments, indicating that the regulation of N2O emissions is transmitted by AMF-induced changes in the denitrification process. A structural equation model further revealed that AMF indirectly influenced N2O emissions by altering the abundance of N metabolism-related genes, rather than by altering soil chemical properties or the diversity of bacterial communities. Thus, we proposed a possible mechanism by which AMF can regulate denitrification activities and therefore N2O emissions from agricultural soils.

Authors

Gui, H.,Gao, Y.,Wang, Z.,Shi, L.,Yan, K.,Xu, J.

Publication year

2021

Resilient Landscapes is powered by CIFOR-ICRAF. Our mission is to connect private and public actors in co-beneficial landscapes; provide evidence-based business cases for nature-based solutions and green economy investments; leverage and de-risk performance-driven investments with combined financial, social and environmental returns.

2025 All rights reserved    Privacy notice