Exploring the potential of ground-penetrating radar (GPR) to measure the extent of chronic disturbance in peatlands: Examples from acid mine drainage and peat fire

Peatlands are accumulations of partially decayed organic soil that cover approximately 3% of Earth’s surface and have been shown to serve essential environmental and ecological functions such as sequestering carbon, purifying water, and providing habitat for organisms. However, peatlands are threatened by pressures from agriculture, urban development, mining, and climate change. Geophysical methods have been used in peatlands to determine peat volume and carbon stocks (e.g., Comas et al., 2017), observe differences in humification and water content (e.g., Ulriksen, 1982), guide engineering projects (e.g., Jol and Smith, 1995), learn about subsurface greenhouse gas dynamics (Wright and Comas, 2016), observe seasonal variations in pore water salinity (Walter et al., 2018), and assess hydrological processes (Hare et al., 2017). Among various geophysical methods, ground penetrating radar (GPR) is arguably the most popular for studying peat properties given the method’s sensitivity to variations in water content and ability to resolve major structural properties within the peat at high spatial resolution. Though less widely applied, frequency-domain analysis of GPR may also yield useful information.

Mapping Tree Height in Burkina Faso Parklands with TanDEM-X

Mapping of tree height is of great importance for management, planning, and research related to agroforestry parklands in Africa. In this paper, we investigate the potential of spotlight-mode data from the interferometric synthetic aperture radar (InSAR) satellite system TanDEM-X (TDM) for mapping of tree height in Saponé, Burkina Faso, a test site characterised by a low average canopy cover (~15%) and a mean tree height of 9.0 m. Seven TDM acquisitions from January–April 2018 are used jointly to create high-resolution (~3 m) maps of interferometric phase height and mean canopy elevation, the latter derived using a new, model-based processing approach compensating for some effects of the side-looking geometry of SAR. Compared with phase height, mean canopy elevation provides a more accurate representation of tree height variations, a better tree positioning accuracy, and better tree height estimation performance when assessed using 915 trees inventoried in situ and representing 15 different species/genera. We observe and discuss two bias effects, and we use empirical models to compensate for these effects. The best-performing model using only TDM data provides tree height estimates with a standard error (SE) of 2.8 m (31% of the average height) and a correlation coefficient of 75%. The estimation performance is further improved when TDM height data are combined with in situ measurements; this is a promising result in view of future synergies with other remote sensing techniques or ground measurement-supported monitoring of well-known trees.

Exploring the potential of ground-penetrating radar (GPR) to measure the extent of chronic disturbance in peatlands

Peatlands are accumulations of partially decayed organic soil that cover approximately 3% of Earth’s surface and have been shown to serve essential environmental and ecological functions such as sequestering carbon, purifying water, and providing habitat for organisms. However, peatlands are threatened by pressures from agriculture, urban development, mining, and climate change. Geophysical methods have been used in peatlands to determine peat volume and carbon stocks (e.g., Comas et al., 2017), observe differences in humification and water content (e.g., Ulriksen, 1982), guide engineering projects (e.g., Jol and Smith, 1995), learn about subsurface greenhouse gas dynamics (Wright and Comas, 2016), observe seasonal variations in pore water salinity (Walter et al., 2018), and assess hydrological processes (Hare et al., 2017). Among various geophysical methods, ground penetrating radar (GPR) is arguably the most popular for studying peat properties given the method’s sensitivity to variations in water content and ability to resolve major structural properties within the peat at high spatial resolution. Though less widely applied, frequency-domain analysis of GPR may also yield useful information.

Resilient Landscapes is powered by CIFOR-ICRAF. Our mission is to connect private and public actors in co-beneficial landscapes; provide evidence-based business cases for nature-based solutions and green economy investments; leverage and de-risk performance-driven investments with combined financial, social and environmental returns.

Learn more about Resilient Landscapes Luxembourg

2025 All rights reserved    Privacy notice