Using n-dimensional hypervolumes for species distribution modelling: A response to Qiao et al. (†)

Hypervolume approaches are used to quantify functional diversity and quantify environmental niches for species distribution modelling. Recently, Qiao et al. (2016) criticized our geometrical kernel density estimation (KDE) method for measuring hypervolumes. They used a simulation analysis to argue that the method yields high error rates and makes biased estimates of fundamental niches. Here, we show that (a) KDE output depends in useful ways on dataset size and bias, (b) other species distribution modelling methods make equally stringent but different assumptions about dataset bias, (c) simulation results presented by Qiao et al. (2016) were incorrect, with revised analyses showing performance comparable to other methods, and (d) hypervolume methods are more general than KDE and have other benefits for niche modelling. As a result, our KDE method remains a promising tool for species distribution modelling.

Comparative gastrointestinal organ lengths among Amazonian primates (Primates: Platyrrhini)

The morphological features of the gastrointestinal tract (GIT) in mammals reflect a species’ food niche breadth and dietary adaptations. For many wild mammals, the relationship between the structure of the GIT and diet is still poorly understood, for example, the GIT for frugivorous primates is usually classified as unspecialized and homogeneous. Here, we compare the GIT structure of 13 primate species from the three families of extant platyrrhines (Atelidae, Pitheciidae, and Cebidae) in Amazonia, and discuss possible evolutionary adaptations to different diets and trophic niches. We measured the length of the esophagus, stomach, small intestine, large intestine, cecum, colon, and rectum of the digestive tracts of 289 primate specimens. We determined the allometric relationships of the different tubular organs with the total length of the GIT as a proxy of specimen body size. Allometric parameters were used to establish the quotients of differentiation of every organ for each primate specimen. There was a high differentiation in structure of the digestive organs among genera. Alouatta specimens clearly separated from the other genera based on dissimilarities in gastric, colonic, and rectal quotients, likely linked to the fermentation of plant contents. In contrast, all cebines (Sapajus, Cebus, and Saimiri) and Cacajao species had similar small intestine quotients, which is expected due to their high rates of animal matter consumed. We show that diverse adaptations in digestive structure exist among frugivorous primates, which in turn reflect different dietary patterns within this group that may enable the geographic coexistence of different primate species.

Spatial Niche Expansion at Multiple Habitat Scales of a Tropical Freshwater Turtle in the Absence of a Potential Competitor

Resource partitioning, the division of limited resources by species to help avoid competition, has been observed in freshwater turtle assemblages in several natural systems but has rarely been studied in tropical African ecosystems. Here, we investigate habitat preferences of two congeneric species in the family Pelomedusidae, Pelusios castaneus and P. cupulatta, in riverine/wetland habitats in the southern Ivory Coast (West Africa). Pelusios castaneus is a widespread species across West-central African savannahs and open forests, whereas P. cupulatta is endemic to the Upper Guinean forest region in West Africa. The two species have a similar diet composition (mainly carnivorous) but diverge considerably in body size, P. cupulatta being much larger. We use hand-fishing-nets and fishing funnel traps to record turtles in 18 distinct sites and analyze habitat preferences by species at two spatial scales. At a macro-habitat scale, P. castaneus is captured mainly in marshlands, whereas P. cupulatta is found in both rivers and wetlands. The two species differ significantly in their use of: (i) banks (P. castaneus being found primarily in spots with grassy banks, whereas P. cupulatta is found in spots with forested banks), and (ii) aquatic vegetation (P. cupulatta prefers spots with more abundant aquatic vegetation than P. castaneus), but both species select sites with no or moderate current. Additionally, in sites where P. cupulatta is not found, P. castaneus expands its spatial niche at multiple habitat scales, notably invading waterbodies with forested banks. Our results suggest that these two Pelomedusid turtle species potentially compete in the freshwater habitats in the southern Ivory Coast.

Resilient Landscapes is powered by CIFOR-ICRAF. Our mission is to connect private and public actors in co-beneficial landscapes; provide evidence-based business cases for nature-based solutions and green economy investments; leverage and de-risk performance-driven investments with combined financial, social and environmental returns.

2024 All rights reserved    Privacy notice