In order to estimate water use, water requirements and carbon sequestration of tropical plantation systems such as rubber it is adamant to have accurate information on leaf area development of the plantation as the main determinant of evapotranspiration. Literature commonly suggests a number of different methods on how to obtain leaf area index (LAI) information from tree plantation systems. Methods include destructive measurements of leaf area at peak LAI, indirect methods such as gap fraction methods (i.e. Hemiview and LAI 2000) and radiation interception methods (i.e. SunScan) or litter fall traps. Published values for peak LAI in rubber plantation differ widely and show no clear trend to be explained by management practices or the influence of local climate patterns. This study compares four methods for determining LAI of rubber plantations of different ages in Xishuangbanna, Yunnan, PR China. We have tested indirect measurement techniques such as light absorption and gap fraction measurements and hemispherical image analysis against litter fall data in order to obtain insights into the reliability of these measuring techniques for the use in tropical tree plantation systems. In addition, we have included data from destructive harvesting as a comparison. The results presented here clearly showed that there was no consistent agreement between the different measurements. Site, time of the day and incoming radiation all had a significant effect on the results depending on the devices used. This leaves us with the conclusion that the integration of published data on LAI in rubber into broad ranging assessments is very difficult to accomplish as the accuracy of the measurements seems to be very sensitive to a number of factors. This diminishes the usefulness of literature data in estimating evapotranspiration from rubber plantations and the induced environmental effects, both on local as well as regional levels. © 2017 Elsevier Ltd
Tag: methods
Loss of dry matter and cell contents from fibrous roots of sugar beet due to sampling, storage and washing
To obtain correction factors for estimating root dry weight from washed samples and to test the efficiency of various procedures for storing root samples, dry matter losses were determined by simulating root washing methods with roots obtained from a nutrient culture. For sugar beet dry matter losses were higher than values previously found for wheat and ryegrass: about 30% for the procedure normally used and about 40% for samples pretreated with sodium pyrophosphate. The largest share of water-soluble sugars was lost from root samples within one day of storing roots. The N content of roots expressed on the basis of remaining dry matter rose first during handling of the root samples and decreased in samples stored for a longer period. In most cases no cell wall material (cellulose and lignin) is lost from the root samples; expressed on the basis of remaining dry weight the contents consequently rose.
Auger sampling, in-growth cores and pin board methods
This chapter outlines those methods for assessing root systems structure and function in the field which are based on washing roots free from the soil in which they grew. Some of these methods are included in previous reviews (Kolesnikov 1971; Böhm 1979). The methods are either disruptive or totally destructive to the root system being studied and to the immediate environment (Taylor et al. 1991).
In Kenya, farmers see early rewards from adding legumes and trees to their farms
[No abstract available]