Introduction to the SAMPLES Approach

This chapter explains the rationale for greenhouse gas emission estimation in tropical developing countries and why guidelines for smallholder farming systems are needed. It briefly highlights the innovations of the SAMPLES approach and explains how these advances fill a critical gap in the available quantification guidelines. The chapter concludes by describing how to use the guidelines.

Nitrous Oxide and Methane Fluxes from Urine and Dung Deposited on Kenyan Pastures

Livestock keeping is ubiquitous in tropical Africa. Urine and dung from livestock release greenhouse gases (GHGs), such as nitrous oxide (N2O) and methane (CH4), to the atmosphere. However, the extent of GHG’s impact is uncertain due to the lack of in situ measurements in the region. Here we measured N2O and CH4 emissions from cow urine and dung depositions in two Kenyan pastures that received different amounts of rainfall using static chambers across wet and dry seasons. Cumulative N2O emissions were greater under dung+urine and urine-only patches (P < 0.0001), more than three times higher in the wet compared with the dry season (P < 0.0001), and higher in the farm receiving higher rainfall overall (P < 0.0001). Cumulative CH4 emissions differed across treatments (P = 0.012), driven primarily by soil CH4 uptake from the urine-only treatment. Cumulative N2O emissions were positively related to N input rate in excreta. However, the relationship was linear during the dry season (r2 = 0.99; P = 0.001) and exponential during the wet season (r2 = 0.99; P < 0.0001). Nitrous oxide emission factors were 0.05% (dry season) and 0.18% (wet season) of N in urine and dung+urine, which is less than 10% of the IPCC Default Tier 1 emission factor of 2%. We predict that emissions from cattle urine in Kenya are approximately 1.7 Gg N2O–N yr-1 (FAO estimates 11.9 Gg N2O–N yr-1). Our findings suggest that current estimates may overestimate the contribution of excreta to national GHG emissions and that emission factors from urine and dung need to account for agroecosystems with distinct wet and dry seasons.

Unexpected results of a pilot throughfall exclusion experiment on soil emissions of CO2, CH4, N2O, and NO in eastern Amazonia

The eastern Amazon Basin may become drier as a result of less regional recirculation of water in a largely deforested landscape and because of increased frequency and intensity of El Niño events induced by global warming. Drier conditions may affect several plant and soil microbial processes, including soil emissions of CO2, CH4, NO, and N2O. We report here unanticipated results of a pilot study that was initiated to test the feasibility of a larger-scale throughfall exclusion experiment. In particular, soil drying caused a switch from net consumption of atmospheric CH4 by soils in the control plot to net CH4 emission from soils in the experimentally dried plot. This result is surprising because production of CH4 requires anaerobic microsites, which are uncommon in dry soil. A plausible explanation for increased CH4 emissions in the dried plot is that dry soil conditions favor termite activity and increased coarse root mortality provides them with a substrate. Another surprise was that both NO and N2O fluxes were elevated several years after initiation of the drying experiment. Apparently, a pulse of N availability caused by experimental drying persisted for at least 3 years. As expected, CO2 emissions were lower in the dried plots, which is consistent with lower rates of root growth observed in root in-growth cores placed in the dried plots. More work is needed to test these explanations and to confirm these phenomena, but these results demonstrate that changes in climate could have unanticipated effects on biogeochemical processes in soils that we do not adequately understand.

Evaluation and improvement of the E3SM land model for simulating energy and carbon fluxes in an Amazonian peatland

Tropical peatlands are one of the largest natural sources of atmospheric methane (CH4) and play a significant role in regional and global carbon budgets. However, large uncertainties persist regarding their feedbacks to climate variations. The Energy Exascale Earth System Model (E3SM) Land Model (ELM) is an ongoing state-of-the-science model, which has developed new representations of soil hydrology and biogeochemistry and includes a new microbial-functional-group-based CH4 module. This model has been tested in boreal forest peatlands, but has not yet been evaluated for simulating energy and carbon exchange for tropical peatlands. Here, we evaluated the ELM performance in simulating energy, carbon dioxide (CO2) and CH4 fluxes of an Amazonian palm swamp peatland in Iquitos, Peru. ELM simulations using default parameter values resulted in poor performance of seasonal carbon dynamics. Several algorithms were improved according to site-specific characteristics and key parameters were optimized using an objective surrogate-assisted Bayesian approach. The modified algorithms included the soil water retention curve, a water coverage scalar function for CH4 processes, and a seasonally varying leaf carbon-to-nitrogen ratio function. The revised tropics-specific model better simulated the diel and seasonal patterns of energy and carbon fluxes of the palm swamp peatland. Global sensitivity analyses indicated that the strong controls on energy and carbon fluxes were mainly attributed to the parameters associated with vegetation activities, such as plant carbon distribution, stomatal regulation, photosynthetic capacity, and leaf phenology. Parameter relative importance depended on biogeochemical processes and shifted significantly between wet and dry seasons. This modeling study advanced the understanding of biotic controls on the energy and carbon exchange in Amazonian palm swamp peatlands and identified knowledge gaps that need to be addressed for better prediction of carbon cycle processes and budgets for tropical peatlands.

Soil nitrous oxide and methane fluxes from a land-use change transition of primary forest to oil palm in an Indonesian peatland

Despite the documented increase in greenhouse gas (GHG) emissions from Southeast Asian peat swamp forest degradation and conversion to oil palm over recent decades, reliable estimates of emissions of nitrous oxide (N2O) and methane (CH4) are lacking. We measured soil fluxes of N2O and CH4 and their environmental controls along a peatland transition from primary forest (PF) to degraded drained forest (DF) to oil palm plantation (OP) over 18 months in Jambi, Sumatra, Indonesia. Sampling was conducted monthly at all sites and more intensively following two fertilization events in the OP. Mean annual emissions of N2O (kg N ha−1 yr−1) were 1.7 ± 0.2 for the PF, 2.3 ± 0.2 for the DF and for the OP 8.1 ± 0.8 without drainage canals (DC) and 7.7 ± 0.7 including DC. High N2O emissions in the OP were driven by peat decomposition, not by N fertilizer addition. Mean CH4 annual fluxes (kg C ha−1 yr−1) were 8.2 ± 1.9 for the PF, 1.9 ± 0.4 for the DF, and 1.6 ± 0.3 for the OP with DC and 1.1 ± 0.2 without. Considering their 20-year global warming potentials (GWP), the combined non-CO2 GHG emission (Mg CO2-equivalent ha−1 yr−1) was 3.3 ± 0.6 for the PF and 1.6 ± 0.2 for the DF. The emission in the OP (3.8 ± 0.3 with or without DC) was similar to the PF because reductions in CH4 emissions offset N2O increases. However, considering 100-year GWP, the combined non-CO2 GHG emission was larger in the OP (3.4 ± 0.3 with DC and 3.5 ± 0.3 without) compared to both the PF and the DF (1.5 ± 0.2 and 1.2 ± 0.1, respectively). The increase in peat N2O emissions associated with the land-use change transition from primary forest to oil palm plantation at our sites provides further evidence of the urgent need to protect tropical peat swamp forests from drainage and conversion.

Conversion of rainforest to rubber plantations impacts rhizosphere soil mycobiome and alters soil biological activity

In Asia, large swathes of rainforest have been converted to rubber plantations, with major consequences for biodiversity and ecosystem services. However, the impact of this land use conversion on rhizosphere soil mycobiome has not yet been addressed. This study aims to investigate how rhizosphere soil fungal communities and their associated biological activity (soil respiration, soil methane (CH4) and potential soil enzyme production) are impacted by the conversion of rainforest to rubber plantations. Fungal richness and community composition in rhizosphere soils collected from natural rainforests, immature rubber, and mature rubber plantations were analyzed using paired-end Illumina sequencing. The conversion of natural rainforest to rubber plantations significantly altered fungal community composition of specific functional groups (saprotrophs, pathogens and mycorrhiza). We observed significant loss of saprotrophic and ectomycorrhizal fungi in natural rainforests, but enrichment of plant pathogenic fungi in immature rubber plantations. The mechanism underlying the effects of forest conversion on changes of fungal communities is related to reductions in soil pH, total nitrogen (N) and ammonium (NH4) in rubber plantations. Conversion to rubber plantation also resulted in decline of soil respiration rates and less potential for cellulase and chitinase productions. The significant negative correlations between fungal richness and soil respiration in mature rubber plantations indicated high competition among fungi and low nutrient availability in this system. We demonstrate the negative consequences of the conversion of rainforest to rubber plantations on soil biological activity and significant changes in fungal community composition that could threaten long-term ecosystem functions.

Carbon Dynamics in Rewetted Tropical Peat Swamp Forests

Degraded and drained peat swamp forests (PSFs) are major sources of carbon emissions in the forestry sector. Rewetting interventions aim to reduce carbon loss and to enhance the carbon stock. However, studies of rewetting interventions in tropical PSFs are still limited. This study examined the effect of rewetting interventions on carbon dynamics at a rewetted site and an undrained site. We measured aboveground carbon (AGC), belowground carbon (BGC), litterfall, heterotrophic components of soil respiration (Rh), methane emissions (CH4), and dissolved organic carbon (DOC) concentration at both sites. We found that the total carbon stock at the rewetted site was slightly lower than at the undrained site (1886.73 ± 87.69 and 2106.23 ± 214.33 Mg C ha−1, respectively). The soil organic carbon (SOC) was 1685 ± 61 Mg C ha−1 and 1912 ± 190 Mg C ha−1 at the rewetted and undrained sites, respectively, and the carbon from litterfall was 4.68 ± 0.30 and 3.92 ± 0.34 Mg C ha−1 year−1, respectively. The annual average Rh was 4.06 ± 0.02 Mg C ha−1 year−1 at the rewetted site and was 3.96 ± 0.16 Mg C ha−1 year−1 at the undrained site. In contrast, the annual average CH4 emissions were −0.0015 ± 0.00 Mg C ha−1 year−1 at the rewetted site and 0.056 ± 0.000 Mg C ha−1 year−1 at the undrained site. In the rewetted condition, carbon from litter may become stable over a longer period. Consequently, carbon loss and gain mainly depend on the magnitude of peat decomposition (Rh) and CH4 emissions.

Spatio-Temporal Variability of Peat CH4 and N2O Fluxes and Their Contribution to Peat GHG Budgets in Indonesian Forests and Oil Palm Plantations

Land-use change in tropical peatlands substantially impacts peat emissions of methane (CH4) and nitrous oxide (N2O) in addition to emissions of carbon dioxide (CO2). However, assessments of full peat greenhouse gas (GHG) budgets are scarce and CH4 and N2O contributions remain highly uncertain. The objective of our research was to assess changes in peat GHG flux and budget associated with peat swamp forest disturbance and conversion to oil palm plantation and to evaluate drivers of variation in trace gas fluxes. Over a period of one and a half year, we monitored monthly CH4 and N2O fluxes together with environmental variables in three undrained peat swamp forests and three oil palm plantations on peat in Central Kalimantan. The forests included two primary forests and one 30-year-old secondary forest. We calculated the peat GHG budget in both ecosystems using soil respiration and litterfall rates measured concurrently with CH4 and N2O fluxes, site-specific soil respiration partitioning ratios, and literature-based values of root inputs and dissolved organic carbon export. Peat CH4 fluxes (kg CH4 ha−1 year−1) were insignificant in oil palm (0.3 ± 0.4) while emissions in forest were high (14.0 ± 2.8), and larger in wet than in dry months. N2O emissions (kg N2O ha−1 year−1) were highly variable spatially and temporally and similar across land-uses (5.0 ± 3.9 and 5.2 ± 3.7 in oil palm and forest). Temporal variation of CH4 was controlled by water table level and soil water-filled pore space in forest and oil palm, respectively. Monthly fluctuations of N2O were linked to water table level in forest. The peat GHG budget (Mg CO2 equivalent ha−1 year−1) in oil palm (31.7 ± 8.6) was nearly eight times the budget in forest (4.0 ± 4.8) owing mainly to decreased peat C inputs and increased peat C outputs. The GHG budget was also ten times higher in the secondary forest (10.2 ± 4.5) than in the primary forests (0.9 ± 3.9) on the account of a larger peat C budget and N2O emission rate. In oil palm 96% of emissions were released as CO2 whereas in forest CH4 and N2O together contributed 65% to the budget. Our study highlights the disastrous atmospheric impact associated with forest degradation and conversion to oil palm in tropical peatlands and stresses the need to investigate GHG fluxes in disturbed undrained lands.

Nutritional Quality, Voluntary Intake and Enteric Methane Emissions of Diets Based on Novel Cayman Grass and Its Associations With Two Leucaena Shrub Legumes

Methane (CH4) emissions from enteric fermentation in cattle are an important source of greenhouse gases, accounting for about 40% of all agricultural emissions. Diet quality plays a fundamental role in determining the magnitude of CH4 emissions. Specifically, the inclusion of feeds with high digestibility and nutritional value have been reported to be a viable option for reducing CH4 emissions and, simultaneously, increase animal productivity. The present study aimed to evaluate the effect of the nutritional composition and voluntary intake of diets based on tropical forages upon CH4 emissions from zebu steers. Five treatments (diets) were evaluated: Cay1: Urochloa hybrid cv. Cayman (harvested after 65 days of regrowth: low quality); Cay2: cv. Cayman harvested after 45 days of regrowth; CayLl: cv. Cayman + Leucaena leucocephala; CayLd: cv. Cayman + Leucaena diversifolia; Hay: Dichantium aristatum hay as a comparator of common naturalized pasture. For each diet representing different levels of intensification (naturalized pasture, improved pasture, and silvopastoral systems), CH4 emissions were measured using the polytunnel technique with four zebu steers housed in individual chambers. The CH4 accumulated was monitored using an infrared multigas analyzer, and the voluntary forage intake of each animal was calculated. Dry matter intake (DMI, % of body weight) ranged between 0.77 and 2.94 among diets offered. Emissions of CH4 per kg of DMI were significantly higher (P < 0.0001) in Cay1 (60.4 g), compared to other treatments. Diets that included Leucaena forage legumes had generally higher crude protein contents and higher DMI. Cay1 and Hay which had low protein content and digestibility had a higher CH4 emission intensity (per unit live weight gain) compared to Cay2, CayLl and CayLd. Our results suggest that grass consumed after a regrowth period of 45 days results in lower CH4 emissions intensities compared to those observed following a regrowth period of 65 days. Diets with Leucaena inclusion showed advantages in nutrient intake that are reflected in greater live weight gains of cattle. Consequently, the intensity of the emissions generated in the legume-based systems were lower suggesting that they are a good option for achieving the emission reduction goals of sustainable tropical cattle production. © Copyright © 2020 Gaviria-Uribe, Bolivar, Rosenstock, Molina-Botero, Chirinda, Barahona and Arango.

Spatial and temporal variability of soil N2O and CH4 fluxes along a degradation gradient in a palm swamp peat forest in the Peruvian Amazon

Mauritia flexuosa palm swamp, the prevailing Peruvian Amazon peatland ecosystem, is extensively threatened by degradation. The unsustainable practice of cutting whole palms for fruit extraction modifies forest’s structure and composition and eventually alters peat‐derived greenhouse gas (GHG) emissions. We evaluated the spatiotemporal variability of soil N2O and CH4 fluxes and environmental controls along a palm swamp degradation gradient formed by one undegraded site (Intact), one moderately degraded site (mDeg) and one heavily degraded site (hDeg). Microscale variability differentiated hummocks supporting live or cut palms from surrounding hollows. Macroscale analysis considered structural changes in vegetation and soil microtopography as impacted by degradation. Variables were monitored monthly over 3 years to evaluate intra‐ and inter‐annual variability. Degradation induced microscale changes in N2O and CH4 emission trends and controls. Site‐scale average annual CH4 emissions were similar along the degradation gradient (225.6 ± 50.7, 160.5 ± 65.9 and 169.4 ± 20.7 kg C ha−1 year−1 at the Intact, mDeg and hDeg sites, respectively). Site‐scale average annual N2O emissions (kg N ha−1 year−1) were lower at the mDeg site (0.5 ± 0.1) than at the Intact (1.3 ± 0.6) and hDeg sites (1.1 ± 0.4), but the difference seemed linked to heterogeneous fluctuations in soil water‐filled pore space (WFPS) along the forest complex rather than to degradation. Monthly and annual emissions were mainly controlled by variations in WFPS, water table level (WT) and net nitrification for N2O; WT, air temperature and net nitrification for CH4. Site‐scale N2O emissions remained steady over years, whereas CH4 emissions rose exponentially with increased precipitation. While the minor impact of degradation on palm swamp peatland N2O and CH4 fluxes should be tested elsewhere, the evidenced large and variable CH4 emissions and significant N2O emissions call for improved modeling of GHG dynamics in tropical peatlands to test their response to climate changes.

Resilient Landscapes is powered by CIFOR-ICRAF. Our mission is to connect private and public actors in co-beneficial landscapes; provide evidence-based business cases for nature-based solutions and green economy investments; leverage and de-risk performance-driven investments with combined financial, social and environmental returns.

2024 All rights reserved    Privacy notice