Four shrub/tree species, Alchornea cordifolia, Pennisetum purpureum, Chromolaena odorata, and Calliandra calothyrsus were evaluated for their potential contribution to soil fertility restoration after two years fallow. Standing biomass, root distribution, nutrient content in the biomass, decomposition and nutrient release patterns, and association with mycorrhizae were the evaluation parameters. Alchornea and Pennisetum produced thehighest above-ground biomass, 66 t and 54 t/ha respectively. Pennisetum had more than 19 t/ha of root, 92% of which was in the 20 cm top soil. Alchornea had 74% of it roots in this soil layer, mostly as coarse roots while Calliandra had a deeper root system. Alchornea fallow accumulated more N and Ca, and Pennisetum fallow, more K than others, and mycorrhizae were mostly associated with Alchornea roots. The ranking of the different species for the decomposition rate was: Chromolaena > Pennisetum > Calliandra = Alchornea. Also release of nutrients during decomposition followed the order K > N > Ca. Alchornea and Pennisetum could be recommended as green manure species especially when high quantities of material are needed for weed or erosion control. Calliandra and Chromolaena, because of the flush of nutrient during early mass, loss can be used as mulch when the crop demand of nutrient is high. Alchornea decomposed slowly and therefore could be used to improve Chromolaena mulch, thus contributing to the build up of soil organic N and providing both short- and long-term nutrient release.
Tag: litter size
Quantity and quality of organic inputs from coppicing leguminous trees influence abundance of soil macrofauna in maize crops in eastern Zambia
Soil invertebrates are the major determinants of soil processes such as organic matter decomposition and nutrient cycling. However, the effect of quantity and quality of organic inputs on soil biota has not been studied in agroforestry systems in southern Africa. Variations in soil macrofauna abundance under maize grown in fallows of Gliricidia sepium, Acacia anguistissima, Leucaena collinsii, Leucaena diversifolia, Leucaena esculenta, Leucaena pallida, Senna siamea, Calliandra calothyrsus and monoculture maize were assessed at three sites with contrasting agro-ecological conditions in eastern Zambia. It was hypothesised that spatial variations in soil macrofauna abundance under maize crops are mediated by heterogeneity in the quality and quantity of organic inputs produced by these legumes. The relationships between the abundance of macrofauna groups and litter, leaf, stump re-sprout and recycled biomass, stump survival and the quality index lignin (L)+polyphenol (P) to nitrogen (N) ratio were assessed using generalised linear models assuming spatial randomness (Poisson distribution) and aggregation (negative binomial distribution). Earthworms, beetles and millipedes showed spatial aggregation, which was partly explained by the heterogeneity in organic resource quantity and quality. Earthworms and beetles were more abundant under legumes that produced high quantities of biomass with low (L + P) to N ratios and species that have high stump survival after coppicing. Millipedes were favoured by species which produced high quantities of biomass with high (L + P) to N ratios. Although ants and termites showed spatial aggregation, their distributions were not influenced by the quantity or quality of biomass produced by the legumes. Centipedes and Arachnida showed spatial randomness, and their distribution was not influenced by any of the organic quality and quantity variables.