Spatial groundwater recharge estimation in Raya basin, Northern Ethiopia: an approach using GIS based water balance model

Understanding the spatial variability of groundwater recharge in response to distributed Land-use, soil texture, topography, groundwater level, and hydrometeorological parameters is significant when considering the security of groundwater resource development. Thus, this study was aimed at estimating the spatial groundwater recharge of Raya valley, northern Ethiopia using spatially distributed water balance model (WetSpass). Input data for the model were prepared in the form of grid maps using 90 m grid size and the parameter attribute tables were adjusted to represent the Raya valley condition using expert knowledge and scientific literatures. The results of the model indicated that the long-term temporal and spatial average annual rainfall of 710 mm was partitioned as 57 mm (8%) of surface runoff, 598 mm (84%) of evapotranspiration, and 55 mm (8%) of recharge. The recharge corresponds to 137 million cubic meters (Mm3) for the Raya basin (with area of about 2500 km2) from which 84% of the recharge takes place during summer season, while the remaining 16% takes place during the winter (dry) season. The analysis of the simulated result showed that WetSpass works well to simulate water balance components of Raya valley and is especially suitable for studying the effects of Land-use changes on the water regime in the basin.

Water, Water Lords, and Caste: A Village Study from Gujarat, India

Access to and distribution of water is deeply intertwined with structures of power. Strategies of accumulation by dispossession have acquired sustained significance under contemporary regimes of global capitalism (Harvey 2003 Harvey, David. 2003. The New Imperialism. London: Oxford University Press. [Google Scholar]; Swyngedouw 2005 Swyngedouw, Erik. 2005. “Dispossessing H2O: The Contested Terrain of Water Privatization.” Capitalism Nature Socialism 16 (1): 81–98. doi: 10.1080/1045575052000335384[Taylor & Francis Online], [Google Scholar]). Water politics tends to involve a range of interaction patterns in water management, including negotiation, struggle, and also less explicit and longer term disputes and controversies (Mollinga 2008 Mollinga, Peter Paul. 2008. “Water, Politics and Development: Framing a Political Sociology of Water Resources Management.” Water Alternatives 1 (1): 7–23. [Google Scholar]). At the level of the state, water shapes national economies and determines geopolitical boundaries (Mosse 1999 Mosse, David. 1999. “Colonial and Temporary Ideologies of Community Management: The Case of Tank Irrigation Development in South India.” Modern Asian Studies 33 (2): 303–338. doi: 10.1017/S0026749X99003285[Crossref], [PubMed], [Web of Science ®], [Google Scholar]; Wade 1987 Wade, Robert. 1987. Village Republics: Economic Conditions for Collective Action in South India. Cambridge: Cambridge University Press. [Google Scholar]; Wittfogel 1957 Wittfogel, Karl August. 1957. Oriental Despotism: From Comparative Study of Total Power. New Haven: Yale University Press. [Google Scholar]). Similarly, at the heart of water governance and management challenges, in particular those related to social equity and justice in most developing countries, is the question of access to and control of water, which is often hampered by exclusionary political and economic practices (Ioris 2007 Ioris, Antonio A. R. 2007. “The Troubled Waters of Brazil: Nature Commodification and Social Exclusion.” Capitalism Nature Socialism 18 (1): 28–50. doi: 10.1080/10455750601164618[Taylor & Francis Online], [Google Scholar]).

Sensitivity of groundwater recharge under irrigated agriculture to changes in climate, CO2 concentrations and canopy structure

Estimating groundwater recharge in response to increased atmospheric CO2 concentration and climate change is critical for future management of agricultural water resources in arid or semi-arid regions. Based on climate projections from the Intergovernmental Panel on Climate Change, this study quantified groundwater recharge under irrigated agriculture in response to variations of atmospheric CO2 concentrations (550 and 970 ppm) and average daily temperature (+1.1 and +6.4 C compared to current conditions). HYDRUS 1D, a model used to simulate water movement in unsaturated, partially saturated, or fully saturated porous media, was used to simulate the impact of climate change on vadose zone hydrologic processes and groundwater recharge for three typical crop sites (alfalfa, almonds and tomatoes) in the San Joaquin watershed in California. Plant growth with the consideration of elevated atmospheric CO2 concentration was simulated using the heat unit theory. A modified version of the Penman-Monteith equation was used to account for the effects of elevated atmospheric CO2 concentration. Irrigation amount and timing was based on crop potential evapotranspiration. The results of this study suggest that increases in atmospheric CO2 and average daily temperature may have significant effects on groundwater recharge. Increasing temperature caused a temporal shift in plant growth patterns and redistributed evapotranspiration and irrigation water use earlier in the growing season resulting in a decrease in groundwater recharge under alfalfa and almonds and an increase under tomatoes. Elevating atmospheric CO2 concentrations generally decreased groundwater recharge for all crops due to decreased evapotranspiration resulting in decreased irrigation water use. Increasing average daily temperature by 1.1 and 6.4 C and atmospheric CO2 concentration to 550 and 970 ppm led to a decrease in cumulative groundwater recharge for most scenarios. Overall, the results indicate that groundwater recharge may be very sensitive to potential future climate changes.

Agriculture’s Contribution to Nitrate Contamination of Californian Groundwater (1945–2005)

Nitrogen (N) use in intensive agriculture can degrade groundwater resources. However, considerable time lags between groundwater recharge and extraction complicate source attribution and remedial responses. We construct a historic N mass balance of two agricultural regions of California to understand trends and drivers of past and present N loading to groundwater (1945–2005). Changes in groundwater N loading result from historic changes in three factors: the extent of agriculture (cropland area and livestock herd increased 120 and 800%, respectively), the intensity of agriculture (synthetic and manure waste effluent N input rates increased by 525 and 1500%, respectively), and the efficiency of agriculture (crop and milk production per unit of N input increased by 25 and 19%, respectively). The net consequence has been a greater-than-order-of-magnitude increase in nitrate (NO3) loading over the time period, with 163 Gg N yr1 now being leached to groundwater from approximately 1.3 million ha of farmland (not including alfalfa [Medicago sativa L.]). Meeting safe drinking water standards would require NO3 leaching reductions of over 70% from current levels through reductions in excess manure applications, which accounts for nearly half of all groundwater N loading, and through synthetic N management improvements. This represents a broad challenge given current economic and technical conditions of California farming if farm productivity is to be maintained. The findings illustrate the growing tension—characteristic of agricultural regions globally—between intensifying food, feed, fiber, and biofuel production and preserving clean water.

Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation)

Evapotranspiration (ET) is an important component of micro- and macro-scale climatic processes. In agriculture, estimates of ET are frequently used to monitor droughts, schedule irrigation, and assess crop water productivity over large areas. Currently, in situ measurements of ET are difficult to scale up for regional applications, so remote sensing technology has been increasingly used to estimate crop ET. Ratio-based vegetation indices retrieved from optical remote sensing, like the Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index, and Enhanced Vegetation Index are critical components of these models, particularly for the partitioning of ET into transpiration and soil evaporation. These indices have their limitations, however, and can induce large model bias and error. In this study, micrometeorological and spectroradiometric data collected over two growing seasons in cotton, maize, and rice fields in the Central Valley of California were used to identify spectral wavelengths from 428 to 2295 nm that produced the highest correlation to and lowest error with ET, transpiration, and soil evaporation. The analysis was performed with hyperspectral narrowbands (HNBs) at 10 nm intervals and multispectral broadbands (MSBBs) commonly retrieved by Earth observation platforms. The study revealed that (1) HNB indices consistently explained more variability in ET (ΔR2 = 0.12), transpiration (ΔR2 = 0.17), and soil evaporation (ΔR2 = 0.14) than MSBB indices; (2) the relationship between transpiration using the ratio-based index most commonly used for ET modeling, NDVI, was strong (R2 = 0.51), but the hyperspectral equivalent was superior (R2 = 0.68); and (3) soil evaporation was not estimated well using ratio-based indices from the literature (highest R2 = 0.37), but could be after further evaluation, using ratio-based indices centered on 743 and 953 nm (R2 = 0.72) or 428 and 1518 nm (R2 = 0.69).

Who or what makes rainfall? Relational and instrumental paradigms for human impacts on atmospheric water cycling

Human impacts on water cycles (HIWC) can include modification of rainfall. Spatial and temporal variation in rainfall, with implications for ‘water security’, has been attributed to multiple causal pathways, with different options for human agency. Ten historical paradigms of the cause of rainfall imply shifts from ‘nature controlling humans’ to ‘human control over nature’ and ‘human control over other humans’. Paradigm shifts have consequences for human efforts, interacting with social–ecological systems, to appease spirits, please rainmakers, expose ‘rainfakers’, protect forest, plant trees, reduce greenhouse gas emissions, apply cloud seeding, or declare rainfall modification an illegitimate tool in warfare. The ‘instrumental’ and ‘relational’ values of atmospheric water cycling depend on cognitive paradigms of rainfall causation as represented in local, public/policy, or science-based ecological knowledge. The paradigms suggest a wide range of human decision points that require reinterpretation of rationality for any paradigm shift, as happened with the forest–rainfall linkages.

An improved drought-fire assessment for managing fire risks in tropical peatlands

Peatlands transformation in Indonesia has caused immense ecological and environmental degradation. Land use conversion has changed this natural carbon sink to a drought- and fire-prone ecosystem. Public awareness to tackle the drought and fire risk in peatlands has led to the development of drought-fire index. Current knowledge states that both climate and hydrology have a strong influence on drought-induced fire in tropical peatlands, yet the role of soil hydraulic properties in controlling the drying of peats remains unclear. This study develops an improved drought-fire index for tropical peatlands, called the Peat Fire Vulnerability Index, by incorporating groundwater and soil water retention information. We tested the new index on two peatland regions in Kubu Raya and Batanghari, Indonesia, to assess fire danger. We monitored daily rainfall, groundwater tables, and soil moisture from 2018 to 2019 on eight stations in the peatlands. Our model was calibrated against the observed drought index of two stations, and the results were verified with actual fire events through daily fire hotspots and fire burned areas in the other six stations. Results showed that soil-hydrological properties influenced the moistening and drying of peats through capillarity. Our model showed good performance in assessing fire danger during the calibration period, as indicated by three employed statistical metrics: the RMSE-standard deviation ratio (RSR = 0.57), Kling-Gupta Efficiency (KGE = 0.81), and percent bias (PBIAS = 1%). For verification, all observed fire events fell in high and extreme fire danger classes predicted by PFVI. Further, our findings revealed the importance of the groundwater table as a threshold of fire events. The high fire danger class was mostly found when groundwater table dropped below 40 cm, and burned areas only occurred when the groundwater table was below 60 cm. These findings suggest that our drought-fire index can be used as a peat fire risk management tool, and its application may minimize fire risks in tropical peatlands.

Kaleka Agroforest in Central Kalimantan (Indonesia): Soil Quality, Hydrological Protection of Adjacent Peatlands, and Sustainability

Increased agricultural use of tropical peatlands has negative environmental effects. Drainage leads to landscape-wide degradation and fire risks. Livelihood strategies in peatland ecosystems have traditionally focused on transitions from riverbanks to peatland forests. Riparian ‘Kaleka’ agroforests with more than 100 years of history persist in the peatlands of Central Kalimantan (Indonesia), where large-scale open-field agricultural projects have dramatically failed. Our field study in a Dayak Ngaju village on the Kahayan river in the Pulang Pisau district involved characterizing land uses, surveying vegetation, measuring soil characteristics, and monitoring groundwater during a period of 16 months. We focused on how local practices and farmer knowledge compare with standard soil fertility (physical, chemical, biological) measurements to make meaningful assessments of risks and opportunities for sustainable land use within site-specific constraints. The Kaleka agroforests around a former settlement and sacred historical meaning are species-rich agroforests dominated by local fruit trees and rubber close to the riverbank. They function well with high wet-season groundwater tables (up to −15 cm) compatible with peatland restoration targets. Existing soil quality indices rate the soils, with low soil pH and high Alexch, as having low suitability for most annual crops, but active tree regeneration in Kaleka shows sustainability.

Groundwater-Extracting Rice Production in the Rejoso Watershed (Indonesia) Reducing Urban Water Availability: Characterisation and Intervention Priorities

Production landscapes depend on, but also affect, ecosystem services. In the Rejoso watershed (East Java, Indonesia), uncontrolled groundwater use for paddies reduces flow of lowland pressure-driven artesian springs that supply drinking water to urban stakeholders. Analysis of the water balance suggested that the decline by about 30% in spring discharge in the past decades is attributed for 47 and 53%, respectively, to upland degradation and lowland groundwater abstraction. Consequently, current spring restoration efforts support upland agroforestry development while aiming to reduce lowland groundwater wasting. To clarify spatial and social targeting of lowland interventions five clusters (replicable patterns) of lowland paddy farming were distinguished from spatial data on, among other factors, reliance on river versus artesian wells delivering groundwater, use of crop rotation, rice yield, fertiliser rates and intensity of rodent control. A survey of farming households (461 respondents), complemented and verified through in-depth interviews and group discussions, identified opportunities for interventions and associated risks. Changes in artesian well design, allowing outflow control, can support water-saving, sustainable paddy cultivation methods. With rodents as a major yield-reducing factor, solutions likely depend on more synchronized planting calendars and thus on collective action for effectiveness at scale. Interventions based on this design are currently tested.

Resilient Landscapes is powered by CIFOR-ICRAF. Our mission is to connect private and public actors in co-beneficial landscapes; provide evidence-based business cases for nature-based solutions and green economy investments; leverage and de-risk performance-driven investments with combined financial, social and environmental returns.

2024 All rights reserved    Privacy notice