Vulnerability and adaptive capacity of smallholders in Ho Ho subwatershed, North-Central Viet Nam

Climate change and variability create large uncertainties for agricultural production and smallholders’ livelihoods. Understanding smallholders’ vulnerability and their adaptive capacity to these factors is the key to appropriate interventions to mitigate the impact of climate-related shocks and hazards. In Ho Ho sub-watershed, north-central Viet Nam, smallholders reported a high degree of exposure and sensitivity to climate change and variability owing to the frequency of weather-related extreme events, such as flooding and drought, during the last decade (2005–2014), with a concomitant impact on households and agriculture. When comparing up- and downstream communes, biophysical factors such as topography, land-use patterns and the presence of a hydropower plant in the downstream commune played important roles in creating differences in exposure, sensitivity and adaptive capacity between the two communes. The results showed that while the upstream commune was not more vulnerable to weather-related extreme events compared to the downstream, its adaptive capacity was much lower, making the upstream generally more vulnerable than the downstream commune. We concluded that serious effects of climate change and variability during the last decade were experienced by smallholders in Ho Ho sub-watershed. We recommend that while enhancing the adaptive capacity of smallholders can include improvement both on- and off-farm, growing trees is a solution for improving both the landscapes and smallholders’ resilience.

An assessment of recent peat forest disturbances and their drivers in the Cuvette Centrale, Africa

The largest tropical peatland complex in the Cuvette Centrale is marked by persistent knowledge gaps. We assessed recent peat forest disturbances and their direct drivers from 2019 to 2021 in Cuvette Centrale, spanning the Republic of Congo (ROC) and the Democratic Republic of Congo (DRC). Utilizing peatland maps and Radar for Detecting Deforestation alert data, we analyzed spatial and temporal patterns of disturbances. Further, we examined 2267 randomly sampled peat forest disturbance events through visual interpretation of monthly Planet and Sentinel 2A data to identify direct drivers. Our findings revealed that between 2019 and 2021, about 91% of disturbances occurred in DRC, with hotspots concentrated in the northwest Sud-Ubangi district. Disturbances predominantly followed a sharp seasonal pattern, recurring during the first half of each year with temporal hotspots emerging between February and May, closely associated with smallholder agriculture activities. Smallholder agriculture accounted for over 88% of disturbances in Cuvette Centrale, representing a leading role both in ROC (∼77%) and DRC (∼89%). While small-scale logging contributed 7% to the disturbances in the region, it constituted an important driver (18%) in the ROC. Other drivers included floods, roads, and settlements. Approximately 77% of disturbances occurred outside managed forest concessions in Cuvette Centrale, with 40% extending into protected areas. About 90% of disturbances were concentrated within 1 km of peat forest edges and ∼76% of the disturbances occurred within 5 km of road or river networks. The insights underscore the crucial need for effective peat forest conservation strategies in Cuvette Centrale and can inform national policies targeting peatland protection, aligning with commitments in the Brazzaville Declaration and the Paris Agreement. Further, our findings on direct driver assessment could serve as a reference dataset for machine learning models to automate the visual interpretation and upscale the assessment across the entire region.

Resilient Landscapes is powered by CIFOR-ICRAF. Our mission is to connect private and public actors in co-beneficial landscapes; provide evidence-based business cases for nature-based solutions and green economy investments; leverage and de-risk performance-driven investments with combined financial, social and environmental returns.

2024 All rights reserved    Privacy notice