The theory of induced innovation (Hayami and Ruttan1985) argue that both technological and institutional innovation that scare resources occur in response to changing resources endowment. When natural resources became scare, the property right institution evolved from open access to more individualized ownership. This evolution of tenure often erode women’s land right (Lastaria-Cornhiel1997). This study compared two data set in 1997 and 2013 in the matrilineal inheritance system in Sumatera, Indonesia to analyze the implications for gender equity of different patterns of evolution of land tenure and land use decision
Tag: farming system
Landscape-scale variability of soil health indicators: effects of cultivation on soil organic carbon in the Usambara Mountains of Tanzania
Land-use change continues at an alarming rate in sub-Saharan Africa adversely affecting ecosystem services provided by soil. These impacts are greatly understudied, especially in biodiversity rich mountains in East Africa. The objectives of this study were to: conduct a biophysical baseline of soil and land health; assess the effects of cultivation on soil organic carbon (SOC); and develop a map of SOC at high resolution to enable farm-scale targeting of management interventions. Biophysical field surveys were conducted in a 100 km2 landscape near Lushoto, Tanzania, with composite soil samples collected from 160 sampling plots. Soil erosion prevalence was scored, trees were counted, and current and historic land use was recorded at each plot. The results of the study showed a decline in SOC as a result of cultivation, with cultivated plots (n = 105) having mean topsoil OC of 30.6 g kg1, while semi-natural plots (n = 55) had 71 g OC kg1 in topsoil. Cultivated areas were also less variable in SOC than semi-natural systems. Prediction models were developed for the mapping of SOC based on RapidEye remote sensing data for January 2014, with good model performance (RMSEPcal = 8.0 g kg1; RMSEPval = 10.5 g kg1) and a SOC map was generated for the study. Interventions will need to focus on practices that increase SOC in order to enhance productivity and resilience of the farming system, in general. The high-resolution maps can be used to spatially target interventions as well as for monitoring of changes in SOC. © 2015, The Author(s).
Multi-Actors’ Co-Implementation of Climate-Smart Village Approach in West Africa: Achievements and Lessons Learnt
Climate change and variability are significant challenges for the environment and food security worldwide. Development strategies focusing simultaneously on adaptive farming, productivity, and reducing greenhouse gas (GHG) emissions-known as climate-smart agriculture (CSA) strategies-are key to responding to these challenges. For almost a decade, within the framework of Climate Change, Agriculture and Food Security (CCAFS), World Agroforestry (ICRAF), and its partners have been using Participatory Action Research (PAR) to fully engage key stakeholders in co-creating such CSA development strategies. This includes the testing of Agricultural Research for Development (AR4D) CSA scalability options. The multidisciplinary teams include the National Research and Extension Systems (NARES), national meteorological services (NMS), non-profit organizations (NGOs), and local radio programs, among others. The CCAFS-West Africa Program, World Agroforestry-West and Central Africa (ICRAF-WCA), International Union for Conservation of Nature (IUCN), University of Reading, and Centre Régional de Formation et d’Application en Agro-météorologie et Hydrologie Opérationnelle (AGRHYMET) provide technical backstopping to the national teams. Climate information (CI) was used as an entry point to inform the development of CSA technologies and practices within Climate-Smart Villages (CSV). This groundwork has led to a greater understanding of three critical factors for successful CSV implementation: (1) Building strong partnerships to co-design and develop agricultural systems that improve ecosystem and population resilience, (2) Key stakeholders (researchers, farmers, development agents, and students) capacity strengthening through vocational and academic training, and (3) Using CI for livelihood planning at all scales. These three factors support more effective identification and testing of agricultural technologies and practices addressing climate variability and change at plot, community, and landscape levels. This paper discusses the PAR-CSA methodology and parameters for evaluation, including biophysical and social change. Keys to success, including communication, knowledge sharing tools, and scalability are also discussed. Finally, future opportunities for improvement are presented, including knowledge product development, CSA policy and investment planning, capacity building, further engagement of the private sector, and additional research on existing practices and tools.
The effects of agroecological farming systems on smallholder livelihoods: a case study on push–pull system from Western Kenya
There is a need for scaling-up agroecology to promote sustainable agriculture at global level. Although, recent studies show that agroecological approaches can achieve both high yields and profits compared with conventional systems, the performance of other socioeconomic indicators remains unknown. This study has two objectives (i) identify the main characteristics of small-scale producers who represent the target-groups of the SDG 2; (ii) provide a comparison between push–pull and conventional farming systems of maize production to explore and possibly implement sustainable systems. In collaboration with Biovision Africa Trust, a participatory assessment framework was implemented in Western Kenya. Twenty-three farmers were selected and data were analysed showing that the push–pull contributes to social/cultural and natural/ecological capitals. In particular, push–pull farmers are more focused on socially oriented groups (75%); moreover, they cultivate smaller plots (1.9 ha) compared to conventional farmers (3.1 ha) without showing a reduction in profitability. The benefits of adopting push–pull system indicated by farmers (e.g. diminished Striga weed) are consistent with the advantages reported in relevant scientific literature. Considering the explorative nature of this study, the article makes a key contribution by pointing towards important questions for future research on agroecology in Sub-Saharan African countries.
Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review
There is consensus that the global food system is not delivering good nutrition for all and is causing environmental degradation and loss of biodiversity, such that a profound transformation is needed to meet the challenges of persistent malnutrition and rural poverty, aggravated by the growing consequences of climate change. Agroecological approaches have gained prominence in scientific, agricultural and political discourse in recent years, suggesting pathways to transform agricultural and food systems that address these issues. Here we present an extensive literature review of concepts, definitions and principles of agroecology, and their historical evolution, considering the three manifestations of agroecology as a science, a set of practices and a social movement; and relate them to the recent dialogue establishing a set of ten iconic elements of agroecology that have emerged from a global multi-stakeholder consultation and synthesis process. Based on this, a consolidated list of principles is developed and discussed in the context of presenting transition pathways to more sustainable food systems. The major outcomes of this paper are as follows. (1) Definition of 13 consolidated agroecological principles: recycling; input reduction; soil health; animal health; biodiversity; synergy; economic diversification; co-creation of knowledge; social values and diets; fairness; connectivity; land and natural resource governance; participation. (2) Confirmation that these principles are well aligned and complementary to the 10 elements of agroecology developed by FAO but articulate requirements of soil and animal health more explicitly and distinguish between biodiversity and economic diversification. (3) Clarification that application of these generic principles can generate diverse pathways for incremental and transformational change towards more sustainable farming and food systems. (4) Identification of four key entry points associated with the elements: diversity; circular and solidarity economy; co-creation and sharing of knowledge; and, responsible governance to enable plausible pathways of transformative change towards sustainable agriculture and food systems. © 2020, The Author(s).
Farming systems and Conservation Agriculture: Technology, structures and agency in Malawi
Conservation Agriculture (CA) is advocated as an agricultural innovation that will improve smallholder famer resilience to future climate change. Under the conditions presented by the El Niño event of 2015/16, the implementation of CA was examined in southern Malawi at household, district and national institutional levels. Agricultural system constraints experienced by farming households are identified, and in response the technologies, structures and agency associated with CA are evaluated. The most significant constraints were linked to household health, with associated labour and monetary impacts, in addition to the availability of external inputs of fertiliser and improved seed varieties. Our findings show that such constraints are not adequately addressed through current agricultural system support structures, with the institutions surrounding CA (in both Government extension services and NGO agricultural projects) focusing attention predominantly at field level practice, rather than on broader system constraints such as education and health support systems. Limited capacity within local institutions undermines long term efforts to implement new technologies such as CA. It is vitally important that the flexibility of farmers to adapt new technologies in a locally-appropriate manner is not closed down through national and institutional aims to build consensus around narrow technical definitions of a climate-smart technology such as CA. To enable farmers to fully utilise CA programmes, interventions must take a more holistic, cross-sectoral approach, understanding and adapting to address locally experienced constraints. Building capacity within households to adopt new agricultural practices is critical, and integrating healthcare support into agricultural policy is a vital step towards increasing smallholder resilience to future climate change.