Nitrogen mineralization in soils under grasses and under trees in a protected Venezuelan savanna

Nitrogen mineralization was evaluated in soils beneath the most common woody species growing isolated within the grass matrix of a Venezuelan Trachypogon savanna, which has been protected from fire and cattle grazing since 1961. Adult trees of three evergreen species, Byrsonima crassifolia (L) H. B. K., Curatella americana L., and Bowdichia virgilioides H. B. K; and two deciduous, Godmania macrocarpa Hemsley and Cochlospermun vitifolium (Wild) Spreng were selected. The amount of N mineralized (NH4+-N+NO3-N) during 15 weeks of laboratory incubation of soils collected from beneath trees, was significantly higher (p<0.01) than those from under grasses. Values of N mineralized on soil from under trees were from 21.28 to 82.65% greater than for soil from under grasses. A highly significant (p<0.01) positive correlation, for all soils, was found between Nm and SOC, and between Nm and Nt. The higher N mineralization rates under trees would reflect a higher soil biological activity, due to higher SOC and Nt, of the soils under the tree canopies than those under grasses. The N availability values obtained under all species reveal the importance these trees have for creating enriched areas on generally oligotrophic soils.Nitrogen mineralized in the soil from beneath evergreen trees was significantly (p<0.01) higher than from under deciduous trees, being 25.87% higher on average. Similarly to the relation found for all soils, a highly significant (p<0.01) positive correlation between Nm and SOC and between Nm and Nt was also obtained for soils beneath all trees, indicating the importance of SOC and Nt for nitrogen mineralization processes in this savanna. The higher SOC and Nt contents found under evergreen trees are probably due to the longer time they have been established on the site as compared to the deciduous ones.The chemical quality of fresh fallen leaves (as measured by their lignin/nitrogen ratio) did not seem to influence the quality of the SOM (as measured by C/N ratio), since the C/N ratio was not statistically different for the soils under the two groups of trees. Apparently, whatever the chemical quality of the fresh fallen leaves (higher lignin/nitrogen ratio in evergreen trees), the humification processes in this savanna soil environment seems to homogenize the SOM beneath both types of trees.
Download :


This works is licensed under a Creative Commons Attribution 4.0 International License.
Authors
Sánchez, L.F.,García-Miragaya, J.,Chacón, N.
Publication year
2022